
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Experiences Building an Answer Bot for Gi�er

Ricardo Romero
rromero@cs.fsu.edu

Florida State University
Tallahassee, Florida

Esteban Parra
parrarod@cs.fsu.edu

Florida State University
Tallahassee, Florida

Sonia Haiduc
shaiduc@cs.fsu.edu

Florida State University
Tallahassee, Florida

Abstract

Software developers use modern chat platforms to communicate
about the status of a project and to coordinate development and
release efforts, among other things. Developers also use chat plat-
forms to ask technical questions to other developers. While some
questions are project-specific and require an experienced developer
familiar with the system to answer, many questions are rather gen-
eral and may have been already answered by other developers on
platforms such as the Q&A site StackOverflow.

In this paper, we present GitterAns, a bot that can automatically
detect when a developer asks a technical question in a chat and
leverages the information present in Q&A forums to provide the
developer with possible answers to their question. The results of
a preliminary study indicate promising results, with GitterAns
achieving an accuracy of 0.78 in identifying technical questions.

CCS Concepts

• Software and its engineering→ Collaboration in software

development; Documentation;

Keywords

communication, chat, social media, team communication platforms,
bot, Q&A, recommendation

ACM Reference Format:

Ricardo Romero, Esteban Parra, and Sonia Haiduc. 2020. Experiences Build-
ing an Answer Bot for Gitter. In IEEE/ACM 42nd International Conference

on Software Engineering Workshops (ICSEW’20), May 23–29, 2020, Seoul, Re-

public of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3387940.3391505

1 Introduction

Developing complex software systems requires large teams of de-
velopers to collaborate, communicate, and coordinate their efforts.
Recently, modern messaging and collaboration platforms such as
Gitter1 and Slack2 have revolutionized team communications and
project coordination by providing a user-friendly way of managing
and organizing conversations, facilitating knowledge sharing, and

1https://gitter.im/
2https://slack.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391505

by integrating with external software development tools such as
GitHub, Travis CI, and Jira[11, 14, 23, 25]. Developers are nowadays
preferring these messaging platforms, which allow them to receive
real-time responses from other developers, as opposed to more
traditional, asynchronous communication like mailing lists [25].

Developers often use modern messaging platforms to ask tech-
nical questions to other developers[10]. A recent study of the mes-
sages exchanged in the instant messaging platform used by one
large software development company found that about half of the
messages were related to problem-solving (i.e., questions and an-
swers) [25]. Although some of these questions can be very specific
and require a wealth of experience and knowledge of a system to
answer, other questions, which are generally asked by beginners,
may have been already answered on other platforms, such as Q&A
forums. In Q&A forums like StackOverflow, developers interact by
posting questions and answers related to different programming
languages, technologies, and software development topics [3, 16].
Therefore, given that there are already millions of technical ques-
tions answered on StackOverflow, there are high chances that at
least some of the troubleshooting questions asked by developers
on chat platforms have already been answered on StackOverflow.

In this paper, we introduce GitterAns, a bot that automatically
detects when a troubleshooting question is asked in an online Gitter
chat and then provides the user with possible answers, based on
querying StackOverflow for posts similar to the question. Automat-
ically answering these questions could lead to a decrease in the
response time, as well as the effort that developers in an online
community have to put into answering these questions. A prelim-
inary evaluation shows that GitterAns is currently able to detect
troubleshooting questions with 78% accuracy. When answering the
questions, however, we found that, in its current implementation,
GitterAns is able to find the correct answers only in about half of the
cases. Our future work will focus on improving both the question
identification and question answering components of GitterAns, as
well as on performing a large-scale evaluation.

2 The GitterAns Framework

In this section, we present an overview of GitterAns and its main
components, shown in Figure 1. GitterAns has three main parts:
question detection, searching for answers on StackOverflow, and
answer processing.

2.1 Question Detection

To detect a troubleshooting question, GitterAns performs the fol-
lowing steps for any incoming message to the chat room: 1) read
the incoming message, 2) pass the message through a preprocessing
and feature extraction procedure (described below) and 3) based
on the extracted features, predict whether the message is a trou-
bleshooting question or not using a machine learning classifier.

1

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Experiences Building an Answer Bot for Gi�er ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

being classified as non-technical text and 359 messages being clas-
sified as troubleshooting questions. We used this last set of 1,000
manually labeled messages for training and testing the machine
learning classifier in GitterAns.

3.2 Classifier

In this preliminary study, we explore three machine learning classi-
fiers for classifying messages as troubleshooting questions or not:
Multinomial Naïve Bayes (NB)[17], Random Forest (RF)[6], and
Stochastic Gradient Descent (SGD)[5]. We also performed hyperpa-
rameter tuning for these classifiers.

3.2.1 Naïve Bayes (NB) is an efficient linear probabilistic classi-
fier that uses Bayes’ theorem to identify strong (naive) assumptions
between features. NB assumes that all of the features in a given
class are conditionally independent of each other [22]. The multi-
nomial Naïve Bayes model captures word frequency information in
the documents using a unigram language model with integer word
counts. Each document is then typically represented as a vector of
integer or real number attributes, which indicate the importance of
words in the document[17].

3.2.2 Random Forest (RF) is a combination of multiple indepen-
dent decision trees, where each tree is built from a sample drawn
with replacement from the training set. As a result of this random-
ness, the bias of the forest usually slightly increases (with respect
to the bias of a single non-random tree). However, due to averaging,
its variance also decreases. The amount decreased is usually more
than enough to compensate for the increase in bias, hence yielding
an overall better model[6].

3.2.3 Stochastic Gradient Descent (SGD) is a simple yet very
efficient approach to discriminative learning of linear classifiers
under convex loss functions such as (linear) Support Vector Ma-
chines and Logistic Regression. Even though SGD has been around
in the machine learning community for a long time, it has received
a considerable amount of attention in the context of large-scale
learning as it has shown to have high performance for large-scale
problems and sparse data[5].

3.2.4 Hyperparameter Tuning was performed in two stages.
First, we created a list of dictionaries that hold the different param-
eters for each classifier, namely a parameter grid. Second, this list
of dictionaries was then passed into a grid search that iterates over
every possible combination of parameters in the parameter grid
and runs a stratified 10-fold cross-validation on each combination
of parameters and returns the best performing parameters for the
given data.

We used Scikit-learn to perform the hyperparameter tuning. For
the NB model, a total of 96 parameter combinations were created.
The RF classifier had 288 parameter combinations. SGD had a total
of 4,608 parameter combinations. The parameters we found to work
the best for NB were: alpha = 1.0, fit prior = false, max df = 0.4,
n-gram range = 1,1. The parameters we found to work the best for
RF were: max depth = 2, n estimators = 25, max df = 0.7, n-gram
range = 1,2. The parameters we found to work the best for SGD
were: alpha = .001, l1 ratio = 0.6, loss = hinge, max iterations = 50,

penalty = l2, shuffle = true, tol = 0.1, max df = 0.7, n-gram range =
1,3.

3.3 Answering Questions

In order to determine whether GitterAns is able to find the answers
to troubleshooting questions, we implemented a prototype (see
Figure 2) and used it to retrieve and post the top 3 potential answers
for a random sample of 20 troubleshooting questions extracted from
the 359 troubleshooting questions we identified during our final
manual labeling process (see Section 3.1). We created a new Gitter
channel which we used for testing our bot GitterAns. We then
manually posted each of the 20 troubleshooting questions in the
testing channel and inspected the answers provided by GitterAns,
determining if they actually answered the question or not.

3.4 Results

First, we present the results of the individual machine learning
models after hyperparameter tuning and 10-fold cross-validation in
terms of classification accuracy. RF showed the poorest performance
with an accuracy of 0.64, followed by NB with an accuracy of 0.71,
while the SGD model performed the best with an accuracy of 0.78.
However, one disadvantage of SGD is the fact that hyperparameter
tuning for this model took over 24 hours.

The results of the preliminary study on the potential answers
identified by GitterAns for a random sample of troubleshooting
questions showed mixed results. On the one hand, for 11 of the
20 technical questions, GitterAns did not provide a StackOverflow
post that properly answered the question. On the other hand, for
the remaining nine questions, GitterAns was able to recommend a
StackOverflow post answering the question as the first recommen-

dation.
Previous work has shown the importance of query choice for

information retrieval applications on software engineering data
[18] and has unveiled the fact that noise can negatively impact the
performance of these approaches [19]. We therefore hypothesize
that using the whole troubleshooting question as a query may inject
too much noise in the search, leading to GitterAns not being able
to return proper answers for half of the questions. For example,
the following is one of the messages containing a troubleshooting
question posted to the nodejs/node Gitter channel: "@analog-nico I

have followed your blog post steps and am able to install all my npm

packages for iojs; however when I run the application it throws "Module

did not self-register on bcrypt module". A little google search reveals

this could be because it can detect multiple node installations. Any

suggestions.". When using the whole text of the message as a query,
GitterAns is not able to produce any relevant results. However,
we can easily tell that most of the text included in the message
(e.g., "I have followed your blog post steps and am able to install
all my npm packages for iojs; however when I run the application
it throws", "A little google search reveals this could be because",
"Any suggestions"), while useful to give context to a reader, it is not
necessarily relevant to a search for potential answers. To see if our
hypothesis regarding noise in the query holds in this case, we tried
removing all the noise and using only the error message the user
encountered ("Module did not self-register on bcrypt module") as a
query. The results in response to this trimmed query showed that

3

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Experiences Building an Answer Bot for Gi�er ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

References
[1] Rana Alkadhi, Jan Ole Johanssen, Emitza Guzman, and Bernd Bruegge. 2017.

REACT: An Approach for Capturing Rationale in Chat Messages. In Proceedings
of the 11th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM’17). IEEE, Toronto, ON, Canada, 175–180.

[2] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge. 2017. Rationale in Development
Chat Messages: An Exploratory Study. In Proceedings of the 14th IEEE/ACM
International Conference on Mining Software Repositories (MSR’17). 436–446.

[3] Miltiadis Allamanis and Charles Sutton. 2013. Why, When, and What: Analyzing
Stack Overflow Questions by Topic, Type, and Code. In Proceedings of the 10th
IEEE Working Conference on Mining Software Repositories (MSR’13). IEEE, San
Francisco, CA, USA, 53–56.

[4] Abram Anders. 2016. Team Communication Platforms and Emergent Social
Collaboration Practices. International Journal of Business Communication 53, 2
(April 2016), 224–261.

[5] Léon Bottou. 2010. Large-Scale Machine Learning with Stochastic Gradient
Descent. In Proceedings of the 19th International Conference on Computational
Statistics (COMPSTAT’10), Yves Lechevallier and Gilbert Saporta (Eds.). Physica-
Verlag HD, 177–186.

[6] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (Oct. 2001), 5–32.
[7] Chris Brown and Chris Parnin. 2019. Sorry to Bother You: Designing Bots for

Effective Recommendations. In Proceedings of the 1st IEEE/ACM International
Workshop on Bots in Software Engineering (BotSE). IEEE, Montreal, QC, Canada,
54–58. https://doi.org/10.1109/BotSE.2019.00021

[8] Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and Zhen-
chang Xing. 2019. AnswerBot: An Answer Summary Generation Tool Based
on Stack Overflow. In Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’19). Association for Computing Machinery, New York,
NY, USA, 1134âĂŞ1138. https://doi.org/10.1145/3338906.3341186

[9] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2019.
Building an Expert Recommender Chatbot. In Proceedings of the 1st IEEE/ACM
International Workshop on Bots in Software Engineering (BotSE). IEEE, Montreal,
QC, Canada, 59–63. https://doi.org/10.1109/BotSE.2019.00022

[10] Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and
Nicholas A Kraft. 2019. Exploratory Study of Slack Q&AChats as a Mining Source
for Software Engineering Tools. In Proceedings of the 16th IEEE International
Conference on Mining Software Repositories (MSR’19). IEEE, Montreal, Canada,
490–501.

[11] Shaiful Alam Chowdhury and Abram Hindle. 2015. Mining StackOverflow to
Filter out Off-topic IRC Discussion. In Proceedings of the 12th IEEE Working
Conference on Mining Software Repositories (MSR’15). IEEE, Florence, Italy, 422–
425.

[12] Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and
Philipp Leitner. 2019. Current and Future Bots in Software Development. In
Proceedings of the 1st IEEE/ACM International Workshop on Bots in Software En-
gineering (BotSE). IEEE, Montreal, QC, Canada, 7–11. https://doi.org/10.1109/
BotSE.2019.00009

[13] Katsunori Fukui, Tomoki Miyazaki, and Masao Ohira. 2019. A Bot for Suggesting
Questions That Match Each User’s Expertise. In Proceedings of the 1st IEEE/ACM
International Workshop on Bots in Software Engineering (BotSE). IEEE, Montreal,
QC, Canada, 18–19. https://doi.org/10.1109/BotSE.2019.00012

[14] Verena Käfer, Daniel Graziotin, Ivan Bogicevic, Stefan Wagner, and Jasmin Ra-
madani. 2018. Communication in Open-Source Projects-End of the E-mail Era?.
In Proceedings of the 40th IEEE/ACM International Conference on Software Engi-
neering(ICSE’18). IEEE, Gothenburg, Sweden, 242–243.

[15] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik.
2016. Why Developers Are Slacking Off: Understanding How Software Teams
Use Slack. In Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing (CSCW’16). ACM, 333–336.

[16] Mario Linares-Vasquez, Bogdan Dit, and Denys Poshyvanyk. 2013. An Ex-
ploratory Analysis of Mobile Development Issues Using Stack Overflow. In Pro-
ceedings of the 10th IEEE Working Conference on Mining Software Repositories
(MSR’13). IEEE, San Francisco, CA, USA, 93–96.

[17] Andrew McCallum and Kamal Nigam. 1998. A Comparison of Event Models
for Naïve Bayes Text Classification. In Proceedings of the 1st AAAI Workshop
on Learning for Text Categorization (ICML/AAAI’98). AAAI, Madison, WI, USA,
41–48.

[18] Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus,
and Andrea De Lucia. 2017. Predicting Query Quality for Applications of Text
Retrieval to Software Engineering Tasks. ACM Trans. Softw. Eng. Methodol. 26, 1
(2017), 3:1–3:45. https://doi.org/10.1145/3078841

[19] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc. 2018. Are Bug Reports
Enough for Text Retrieval-Based Bug Localization?. In Proceedings of the 34th
IEEE International Conference on Software Maintenance and Evolution (ICSME’18).
381–392. https://doi.org/10.1109/ICSME.2018.00046

[20] Alessandro Murgia, Daan Janssens, Serge Demeyer, and Bogdan Vasilescu. 2016.
Among the Machines: Human-Bot Interaction on Social Q&A Websites. In Pro-
ceedings of the 2016 Conference Extended Abstracts on Human Factors in Computing
Systems (CHI/EA’16). ACM, San Jose, CA, USA, 1272–1279.

[21] Elahe Paikari and André van der Hoek. 2018. A Framework for Understanding
Chatbots and Their Future. In Proceedings of the 11th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE’18). ACM,
Gothenburg, Sweden, 13–16.

[22] Stuart Jonathan Russell and Peter Norvig. 1995. Artificial Intelligence: A Modern
Approach. Prentice-Hall.

[23] M. Storey, A. Zagalsky, F. F. Filho, L. Singer, and D. M. German. 2017. How Social
and Communication Channels Shape and Challenge a Participatory Culture in
Software Development. IEEE Transactions on Software Engineering 43, 2 (Feb.
2017), 185–204.

[24] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Produc-
tivity One Bot at a Time. In Proceedings of the 24th ACM/SIGSOFT International
Symposium on Foundations of Software Engineering (FSE’16). ACM, Seattle, WA,
USA, 928–931.

[25] Viktoria Stray, Nils Brede Moe, and Mehdi Noroozi. 2019. Slack Me if You Can!:
Using Enterprise Social Networking Tools in Virtual Agile Teams. In Proceedings
of the 14th International Conference on Global Software Engineering (ICGSE’19).
IEEE, Montreal, Quebec, Canada, 101–111.

[26] B. Xu, Z. Xing, X. Xia, and D. Lo. 2017. AnswerBot: Automated generation of
answer summary to developers’ technical questions. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 706–716.
https://doi.org/10.1109/ASE.2017.8115681

5

