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Abstract

Software developers use modern chat platforms to communicate
about the status of a project and to coordinate development and
release efforts, among other things. Developers also use chat plat-
forms to ask technical questions to other developers. While some
questions are project-specific and require an experienced developer
familiar with the system to answer, many questions are rather gen-
eral and may have been already answered by other developers on
platforms such as the Q&A site StackOverflow.

In this paper, we present GitterAns, a bot that can automatically
detect when a developer asks a technical question in a chat and
leverages the information present in Q&A forums to provide the
developer with possible answers to their question. The results of
a preliminary study indicate promising results, with GitterAns
achieving an accuracy of 0.78 in identifying technical questions.
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1 Introduction

Developing complex software systems requires large teams of de-
velopers to collaborate, communicate, and coordinate their efforts.
Recently, modern messaging and collaboration platforms such as
Gitter1 and Slack2 have revolutionized team communications and
project coordination by providing a user-friendly way of managing
and organizing conversations, facilitating knowledge sharing, and

1https://gitter.im/
2https://slack.com/
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by integrating with external software development tools such as
GitHub, Travis CI, and Jira[11, 14, 23, 25]. Developers are nowadays
preferring these messaging platforms, which allow them to receive
real-time responses from other developers, as opposed to more
traditional, asynchronous communication like mailing lists [25].

Developers often use modern messaging platforms to ask tech-
nical questions to other developers[10]. A recent study of the mes-
sages exchanged in the instant messaging platform used by one
large software development company found that about half of the
messages were related to problem-solving (i.e., questions and an-
swers) [25]. Although some of these questions can be very specific
and require a wealth of experience and knowledge of a system to
answer, other questions, which are generally asked by beginners,
may have been already answered on other platforms, such as Q&A
forums. In Q&A forums like StackOverflow, developers interact by
posting questions and answers related to different programming
languages, technologies, and software development topics [3, 16].
Therefore, given that there are already millions of technical ques-
tions answered on StackOverflow, there are high chances that at
least some of the troubleshooting questions asked by developers
on chat platforms have already been answered on StackOverflow.

In this paper, we introduce GitterAns, a bot that automatically
detects when a troubleshooting question is asked in an online Gitter
chat and then provides the user with possible answers, based on
querying StackOverflow for posts similar to the question. Automat-
ically answering these questions could lead to a decrease in the
response time, as well as the effort that developers in an online
community have to put into answering these questions. A prelim-
inary evaluation shows that GitterAns is currently able to detect
troubleshooting questions with 78% accuracy. When answering the
questions, however, we found that, in its current implementation,
GitterAns is able to find the correct answers only in about half of the
cases. Our future work will focus on improving both the question
identification and question answering components of GitterAns, as
well as on performing a large-scale evaluation.

2 The GitterAns Framework

In this section, we present an overview of GitterAns and its main
components, shown in Figure 1. GitterAns has three main parts:
question detection, searching for answers on StackOverflow, and
answer processing.

2.1 Question Detection

To detect a troubleshooting question, GitterAns performs the fol-
lowing steps for any incoming message to the chat room: 1) read
the incoming message, 2) pass the message through a preprocessing
and feature extraction procedure (described below) and 3) based
on the extracted features, predict whether the message is a trou-
bleshooting question or not using a machine learning classifier.
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being classified as non-technical text and 359 messages being clas-
sified as troubleshooting questions. We used this last set of 1,000
manually labeled messages for training and testing the machine
learning classifier in GitterAns.

3.2 Classifier

In this preliminary study, we explore three machine learning classi-
fiers for classifying messages as troubleshooting questions or not:
Multinomial Naïve Bayes (NB)[17], Random Forest (RF)[6], and
Stochastic Gradient Descent (SGD)[5]. We also performed hyperpa-
rameter tuning for these classifiers.

3.2.1 Naïve Bayes (NB) is an efficient linear probabilistic classi-
fier that uses Bayes’ theorem to identify strong (naive) assumptions
between features. NB assumes that all of the features in a given
class are conditionally independent of each other [22]. The multi-
nomial Naïve Bayes model captures word frequency information in
the documents using a unigram language model with integer word
counts. Each document is then typically represented as a vector of
integer or real number attributes, which indicate the importance of
words in the document[17].

3.2.2 Random Forest (RF) is a combination of multiple indepen-
dent decision trees, where each tree is built from a sample drawn
with replacement from the training set. As a result of this random-
ness, the bias of the forest usually slightly increases (with respect
to the bias of a single non-random tree). However, due to averaging,
its variance also decreases. The amount decreased is usually more
than enough to compensate for the increase in bias, hence yielding
an overall better model[6].

3.2.3 Stochastic Gradient Descent (SGD) is a simple yet very
efficient approach to discriminative learning of linear classifiers
under convex loss functions such as (linear) Support Vector Ma-
chines and Logistic Regression. Even though SGD has been around
in the machine learning community for a long time, it has received
a considerable amount of attention in the context of large-scale
learning as it has shown to have high performance for large-scale
problems and sparse data[5].

3.2.4 Hyperparameter Tuning was performed in two stages.
First, we created a list of dictionaries that hold the different param-
eters for each classifier, namely a parameter grid. Second, this list
of dictionaries was then passed into a grid search that iterates over
every possible combination of parameters in the parameter grid
and runs a stratified 10-fold cross-validation on each combination
of parameters and returns the best performing parameters for the
given data.

We used Scikit-learn to perform the hyperparameter tuning. For
the NB model, a total of 96 parameter combinations were created.
The RF classifier had 288 parameter combinations. SGD had a total
of 4,608 parameter combinations. The parameters we found to work
the best for NB were: alpha = 1.0, fit prior = false, max df = 0.4,
n-gram range = 1,1. The parameters we found to work the best for
RF were: max depth = 2, n estimators = 25, max df = 0.7, n-gram
range = 1,2. The parameters we found to work the best for SGD
were: alpha = .001, l1 ratio = 0.6, loss = hinge, max iterations = 50,

penalty = l2, shuffle = true, tol = 0.1, max df = 0.7, n-gram range =
1,3.

3.3 Answering Questions

In order to determine whether GitterAns is able to find the answers
to troubleshooting questions, we implemented a prototype (see
Figure 2) and used it to retrieve and post the top 3 potential answers
for a random sample of 20 troubleshooting questions extracted from
the 359 troubleshooting questions we identified during our final
manual labeling process (see Section 3.1). We created a new Gitter
channel which we used for testing our bot GitterAns. We then
manually posted each of the 20 troubleshooting questions in the
testing channel and inspected the answers provided by GitterAns,
determining if they actually answered the question or not.

3.4 Results

First, we present the results of the individual machine learning
models after hyperparameter tuning and 10-fold cross-validation in
terms of classification accuracy. RF showed the poorest performance
with an accuracy of 0.64, followed by NB with an accuracy of 0.71,
while the SGD model performed the best with an accuracy of 0.78.
However, one disadvantage of SGD is the fact that hyperparameter
tuning for this model took over 24 hours.

The results of the preliminary study on the potential answers
identified by GitterAns for a random sample of troubleshooting
questions showed mixed results. On the one hand, for 11 of the
20 technical questions, GitterAns did not provide a StackOverflow
post that properly answered the question. On the other hand, for
the remaining nine questions, GitterAns was able to recommend a
StackOverflow post answering the question as the first recommen-

dation.
Previous work has shown the importance of query choice for

information retrieval applications on software engineering data
[18] and has unveiled the fact that noise can negatively impact the
performance of these approaches [19]. We therefore hypothesize
that using the whole troubleshooting question as a query may inject
too much noise in the search, leading to GitterAns not being able
to return proper answers for half of the questions. For example,
the following is one of the messages containing a troubleshooting
question posted to the nodejs/node Gitter channel: "@analog-nico I

have followed your blog post steps and am able to install all my npm

packages for iojs; however when I run the application it throws "Module

did not self-register on bcrypt module". A little google search reveals

this could be because it can detect multiple node installations. Any

suggestions.". When using the whole text of the message as a query,
GitterAns is not able to produce any relevant results. However,
we can easily tell that most of the text included in the message
(e.g., "I have followed your blog post steps and am able to install
all my npm packages for iojs; however when I run the application
it throws", "A little google search reveals this could be because",
"Any suggestions"), while useful to give context to a reader, it is not
necessarily relevant to a search for potential answers. To see if our
hypothesis regarding noise in the query holds in this case, we tried
removing all the noise and using only the error message the user
encountered ("Module did not self-register on bcrypt module") as a
query. The results in response to this trimmed query showed that
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