
MSABot: A Chatbot Framework for Assisting in the Development

and Operation of Microservice-Based Systems

Chun-Ting Lin
 Department of Computer Science

and Engineering
 National Taiwan Ocean University

 Keelung, Taiwan

00357014@email.ntou.edu.tw

Shang-Pin Ma
Department of Computer Science

and Engineering

 National Taiwan Ocean University

 Keelung, Taiwan

 albert@ntou.edu.tw

Yu-Wen Huang
Department of Computer Science

and Engineering

 National Taiwan Ocean University

 Keelung, Taiwan

 00557012@ntou.edu.tw

ABSTRACT

Microservice architecture (MSA) has become a popular

architectural style. The main advantages of MSA include

modularization and scalability. However, the development and

maintenance of Microservice-based systems are more complex

than traditional monolithic architecture. This research plans to

develop a novel Chatbot system, referred to as MSABot

(Microservice Architecture Bot), to assist in the development and

operation of Microservice-based systems by using Chatbots.

MSABot integrates a variety of tools to allow users to understand

the current status of Microservice development and operation, and

to push the information of system errors or risks to users. For the

operators who take over the maintenance of Microservices,

MSABot also allows them to quickly understand the overall service

architecture and the operation status of each service. Besides, we

invited multiple users who are familiar with the technology of

Microservice or ChapOps to evaluate MSABot. The results of the

survey show that more than 90% of the respondents believe that

MSABot can adequately support the development and maintenance

of Microservice-based systems.

CCS CONCEPTS

Software and its engineering → Software creation and

management

KEYWORDS

Microservice, Microservice Architecture, Chatbot, ChatOps, Hubot,

Rasa

ACM Reference format:

Chun-Ting Lin, Shang-Pin Ma, and Yu-Wen Huang. 2020. MSABot: A

Chatbot Framework for Assisting in the Development and Operation of

Microservice-Based Systems. In Proceedings of 2nd International

Workshop on Bots in Software Engineering (BotSE 2020). ACM, New York,

NY, USA, 5 pages. https://doi.org/10.1145/1234567890

1 Introduction

Nowadays, Microservice architecture (MSA) has become a popular

architectural style [1, 2]. In MSA, Microservices operate as system

components, which perform specific tasks and collaborate with

each other via lightweight communication mechanisms. The main

advantages of MSA include modularization and scalability.

However, the development and maintenance of Microservice-based

systems are not trivial and even complex. The development of

Microservices could be divided into four phases: requirement

analysis, service design, environment establishment, and

implementation & testing. In addition to the analysis, design,

implementation, and testing of service functionality, the

Microservice team needs to set up the development environment

that involves multiple tools and track the build status of

Microservices in the development phase. The maintenance of

Microservices could be divided into three phases: monitoring,

detection, and repair. Maintenance engineers need to maintain the

built services, monitor running services, and fix occurred failures

in the operation phase.

In order to perform the above tasks well, the Microservice team

need to be familiar with a lot of tools to obtain a variety of data [3],

but can only collect scattered and unintegrated information.

DevOps tools are often used to help the Microservice team to

perform required tasks in a more automated way [4, 5]. Although

the tools of CI (continuous integration) and CD (continuous

deployment) can effectively reduce developers' effort, the selection,

learning, use, and integration of DevOps tools is not trivial, and

these tools still cannot help developers or maintenance operators to

easily understand the important knowledge and information of

current development environment, the service development status,

the system architecture, and the service operation status.

The concept of ChatOps is to realize DevOps in a chat room by

using Chatbots [6, 7]. Chatbots are computer programs designed to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ICSEW'20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7963-2/20/05…$15.00

https://doi.org/10.1145/3387940.3391501

mailto:albert@ntou.edu.tw

BotSE 2020, May, 2020, Seoul, Korea J. Lin et al.

chat with users via text or voice [8]. In ChatOps, Chatbots can

passively or actively let developers and maintenance operators

understand the current development and maintenance status [9].

Several ChatOps tools are available today to develop the Chatbots

in DevOps [10-12]; however, these solutions are not devised for

Microservice-based systems. Meanwhile, these solutions usually

rely on regular expressions and are not able to understand the

sentences with the same meaning [13]. Bots only accept queries

with fixed instructions, which usually specify spaces, wording, and

content structure strictly.

Based on the above analysis, this research proposes a novel

Chatbot that assists in the development of Microservice

architecture and supports NLP (natural language processing)

capabilities, referred to be MSABot (Microservice Architecture

Bot). MSABot combines a variety of Microservices development

and maintenance tools to allow users to understand the current

status of Microservices development and operation and to push the

Microservice system's real-time error or risk information to users.

For the operators who take over the maintenance of Microservices,

MSABot also allows them to more quickly understand the overall

service architecture and the operation status of each service.

The following paper is organized as follows: Section 2 presents

system requirements. Section 3 describes system design. Section 4

discusses our evaluation survey and results. Conclusions are drawn

in Section 5.

2 MSABot System Requirements

For a normal process of developing and maintaining a

Microservice-based system, multiple tasks are involved. In the

development stage, first, the Microservice development team (dev

team shortly) specify the requirements, write or produce the OAS

(OpenAPI Specification, or called Swagger) document of each

Microservice, and implement and test services based on the OAS.

The implementation task includes the integration of the API

gateway and the registration to the service discovery system.

Meanwhile, the team needs to connect the VCS (version control

system) and CI/CD (continuous integration/continuous deployment)

tools and set up the CI/CD pipeline. During the stage of

development, dev team members need to check the version

information from the VCS, the build and test results from the

CI/CD tools, and the service status from the service discovery

system.

In the operation stage, the operation team (i.e., the maintenance

engineers) must first read the OAS and supplemental documents of

each Microservice to understand the APIs. Similar to the dev team,

the operation team must use the CI/CD tools to study the test cases

and the test report to understand the functionality of Microservices,

and check the service status from the service discovery system.

Furthermore, the operation team must identify risks and detect

errors from the log manually. It is obvious that if there is an

assistant tool that can ease the above process in a more automated

1 https://jenkins.io/zh/
2 https://github.com/topics/netflix-eureka
3 https://github.com/Netflix/zuul

and integrative way, the effort and complexity of the development

and operation of Microservice-based systems could be reduced.

Therefore, based on the above analysis, we identified nine main

system requirements of the proposed MSABot:

1. Users can ask MSABot for detailed information about

each service, such as version control status and person in

charge.

2. Users can ask MSABot for the OAS (Swagger) document

of each service.

3. Users can learn about the dependency among the

Microservices from MSABot.

4. Users can ask MSABot for the service health information.

5. Users can ask MSABot for the usage status and statistics

of a service.

6. Users can ask MSABot to browse the current system

settings.

7. Users can use MSABot to receive the test and the

deployment results.

8. Users can use MSABot to receive the error or risk

notifications.

9. Users can send different sentences with the same meaning

to MSABot, and MSABot can still recognize and respond

to the correct results. In other words, the user may not fully

follow the precise command formats.

3 MSABot System Design

To realize the system goals, MSABot integrates a lot of related

tools, including Jenkins 1 , Eureka 2 , uuul 3 , Actuator 4 , Swagger

Browser, and VMAMV [14]. Jenkins is an open-sourced

automation tool that enables the developers to build, test, and

deploy their software systems automatically. Eureka, developed by

Netflix, is a service registration and discovery tool with a built-in

load balancer. uuul provides an API gateway with multiple types

of filters that intercept the traffic. Actuator is used to probe the

status of services, such as health, metrics, or info. VMAMV

(Version-based Microservice Analysis, Monitoring, and

Visualization), which was developed by our lab, can discover

service anomalies for all service versions in runtime and

immediately notifies users of problems shortly after they occur.

Besides, RabbitMQ5 is also used to exchange messages between

MSABot and other tools in a message-driven way.

Based on the identified requirements and integrated tools, we

designed multiple scenarios (See Table 1) for the development and

operation of Microservice-based systems. Notably, the scenarios

1~7 are the passive actions, which indicate that the Bot is passively

waiting for queries given by the user, and the scenarios 8~10 are

the active actions, which indicate that the MSABot actively pushes

important messages to the users. Besides, the users of MSABot

include developers, testers, maintenance staff and even customers

and FAE (field application engineer). Note that not all users of

4 https://github.com/spring-projects/spring-boot/tree/master/spring-boot-

project/spring-boot-actuator
5 https://www.rabbitmq.com/

https://jenkins.io/zh/
https://github.com/topics/netflix-eureka
https://github.com/Netflix/zuul
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator
https://www.rabbitmq.com/

MASBot: A Chatbot Framework for Assisting in the Development

and Operation of Microservice-Based Systems
BotSE 2020, May, 2020, Seoul, Korea

MSABot are programmers and flexible conversational interface is

more appropriate than the strict command interface.

Table 1: Conversation scenario and actions
No Scenarios Used Tools

1 Users want to browse a service's information. uuul

2 Users want to track the usage of a service. Actuator on uuul

3 Users want to read the API documentation for a

service.

Swagger Browser

on uuul

4 Users want to see the environmental setting. Eureka

5 Users want to check the service health status. Eureka

6 Users want to see the service dependency graph

[15] for all Microservices in a project.

VMAMV

7 Users want to set and view the system

parameters for a Microservice project.

All tools

8 When the build or deployment on Jenkins is

completed, the users are notified.

Jenkins and

RabbitMQ

9 When a service error occurs on the Eureka

Server, the users are notified.

Eureka and

RabbitMQ

10 When an error or warning message is produced

by VMAMV, the users are notified.

VMAMV and

RabbitMQ

Figure 1: MSABot system architecture

For the use of MSABot, users can install MSABot in the chat

room, and use the chat room to interact with MSABot to get the

required information after setting the system-related parameters.

This research is developed based on the Hubot6 robot framework,

Spring Cloud7 ecosystem, and the Slack8 IM (instant messaging)

system. Note that new Microservice platform and chat room system

can be integrated into MSABot by building required adapters and

plugins.

6 https://hubot.github.com/
7 https://spring.io/projects/spring-cloud

The MSABot system (shown in Figure 1) is divided into the

MSABot Engine and plugins connected to Jenkins and Eureka.

There are five main parts in the MSABot Engine: (1) Each MSABot

inherits Slackbot and records the chat room's information. (2) The

MSABot Controller is used to manage MSABot instances. (3) The

MSABot Initializer is used to initialize and reset MSABot instances.

(4) The Message Handler performs semantic analysis and

corresponding actions through Rasa 9 (discussed later). (5) The

Message Queue Manager is used to monitor the messages in

RabbitMQ, which sent by the plugins on the user's server. We use

MongoDB to manage the user authentication information.

As mentioned, there are many kinds of users in MSABot.

Scripts developed by Hubot only accept queries with fixed

instructions, which may specify spaces, wording, and content

structure strictly. In fact, it is not friendly to users, especially non-

program developers. Therefore, we use Rasa for natural language

processing in MSABot. Rasa is an open-source machine learning

framework that can be used to create conversational AI Chatbots.

The Rasa framework has two important parts: (1) Rasa NLU is used

for NLP and machine learning, and (2) Rasa core SDK is

responsible for keyword extraction. Currently, we design more than

ten intents in the Rasa framework, such as bot_join, service_info,

service_health, service_usage_info, service_api_list, service_env,

last_build_fail, connect_error, and service_dependency_graph, and

also design corresponding actions. Besides, Rasa provides multiple

training methods, such as MITIE, Supervised method, spaCy, and

Tensorflow. The comparison of these training methods is shown in

Table 2. Based on the analysis, we chose and applied the spaCy

training method by using the pretrained_embeddings_spacy

pipeline and pre-trained language models in this research to allow

users input semantically-equivalent sentences.

Table 2: Alternative training methods in Rasa

Method Pros and cons

MITIE ⚫ Need to set up the pipeline manually.

⚫ Need to train the model manually.

⚫ The Rasa community does not recommend to use MITIE.

Supervised

method

⚫ The Rasa community suggests using this method if you

have 1000 or more labeled utterances.

spaCy ⚫ Pre-processing of words in the same classification.

⚫ The Rasa community suggests using this method.

Tensorflow ⚫ Fetching (keywords) Entity is not supported.

⚫ This method was abandoned after version 0.15.

After installing and setting up MSABot, users can ask MSABot

about services information, such as its GIT repository, current

version, service URL, or API documentation (See Figure 2). Note

that the user may input imprecise sentences to obtain the required

information, since the machine learning for intents was executed.

Furthermore, users can obtain the service status and be notified

about the failure status in the chat room (See Figure 3).

8 https://slack.com/intl/en-tw/
9 https://rasa.com/

https://hubot.github.com/
https://spring.io/projects/spring-cloud
https://slack.com/intl/en-tw/
https://rasa.com/

BotSE 2020, May, 2020, Seoul, Korea J. Lin et al.

Figure 2: Use case example: query for service information

Figure 3: Use case example: active risk notification

4 Evaluations

To evaluate the proposed approach, we designed a survey

questionnaire and invited 11 participants (including software

engineers, software architects, and computer science students) who

are familiar with Microservices technology or ChatOps technology

to fill in the questionnaire and provide feedback. The questions

need to be filled in include:

Q1. Background information (such as age and work

experiences, and job title).

Q21. It is not convenient for developers to manually check the

specifications and status of each service.

Q22. Integrating various development tools, such as version

control, CI/CD, and notifications is quite complicated.

Q23. Maintenance engineers have difficulty for taking over

system maintenance.

Q24. It is difficult for developers and maintenance engineers to

understand the entire Microservice system architecture.

Q31. MSABot is helpful to acquire information and knowledge

of a Microservice project.

Q32. MSABot can assist in Microservice development.

Q33. MSABot can facilitate the Microservice maintenance.

Q34. Via MSABot, Microservice team can more easily know

the basic information and status of each service.

Q35. MSABot allows non-programmers or new operators to

understand the system quickly.

Q36. In general, MSABot is beneficial for the development and

maintenance of auxiliary Microservice systems.

Q4. Suggestions to MSABot.

The results of the survey (Q21~Q36) are shown in Figure 4.

Widely-used Likert scaling was applied. SA indicates “strongly

agree”; A indicates “agree”; N indicates “no comment”; D indicates

"disagree"; "SD" indicates " strongly disagree". In general,

respondents agree that the development and operation of

Microservice-based applications are complex, and MSABot is able

to assist developers and maintenance engineers in building and

operating Microservice systems by providing real-time information

passively and alert notifications actively.

Figure 4 Results of the survey

Two of the respondents provided additional feedbacks for Q4,

including two kinds of suggestions:

1. Developer issue: Programmers may prefer the strict

command interface and have no confidence in bots.

Our responses: as mentioned, strict commands are not

friendly for users, especially non-programming stakeholders.

With the conversational interface with NLP support, both

programmers and non-programmers can issue queries more

easily and confidently.

2. Context issue: One of the important features of a Chatbot is

to record the context. It would be better if the Chatbot could

understand the current situation and may give different

responses for different contexts.

Our responses: At present, MSABot can record the

Microservice name mentioned in the previous conversation

Users do not need to repeatedly enter the service name. In

the future, we plan to improve the NLP capability to further

understand the context and provide adequate information

that the users may be interested in, for example, version

change log or related test cases and reports.

5 Conclusion

This paper proposes a Chatbot framework that assists in the

development and maintenance of the Microservices architecture,

called MSABot (Microservice Architecture Bot). In summary,

MSABot provides a flexible conversational interface to extract the

service information, service API documentation, building and

testing results, the health status, service usage analysis, and service

dependency graphs by connecting multiple tools. Users can issue

queries to MSABot using normal sentences, not strict commands.

Users can also receive real-time deploying notifications and service

error or risk messages by MSABot.

Acknowledgment

This research was sponsored by Ministry of Science and

Technology in Taiwan under the grant MOST 108-2221-E-019-

026-MY3.

MASBot: A Chatbot Framework for Assisting in the Development

and Operation of Microservice-Based Systems
BotSE 2020, May, 2020, Seoul, Korea

REFERENCES

[1] Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-Palacios, and Christof

Ebert, "Microservices," IEEE Software, vol. 35, no. 3, pp. 96-100, 2018.

[2] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, I. Hsiu Liu, and Ci-Wei Lan,

"Graph-based and scenario-driven microservice analysis, retrieval, and

testing," Future Generation Computer Systems, vol. 100, pp. 724-735,

2019/11/01/ 2019, doi: https://doi.org/10.1016/j.future.2019.05.048.

[3] Rory V. O'Connor, Peter Elger, and Paul M. Clarke, "Continuous software

engineering-A microservices architecture perspective," Journal of Software:

Evolution and Process, vol. 29, no. 11, 2017, doi: 10.1002/smr.1866.

[4] Lianping Chen, "Microservices: Architecting for Continuous Delivery and

DevOps," presented at the 2018 IEEE International Conference on Software

Architecture (ICSA), 2018.

[5] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles,

"A Survey of DevOps Concepts and Challenges," ACM Computing Surveys,

vol. 52, no. 6, pp. 1-35, 2019, doi: 10.1145/3359981.

[6] Rory V O'Connor, Peter Elger, and Paul M Clarke, "Continuous software

engineering—A microservices architecture perspective," Journal of Software:

Evolution and Process, vol. 29, no. 11, p. e1866, 2017.

[7] Jason Hand, ChatOps: Managing Operations from Group Chat. O'Reilly

Media, 2016.

[8] Shang-Pin Ma and Ching-Ting Ho, "Modularized and Flow-Based Approach

to Chatbot Design and Deployment," Journal of Information Science &

Engineering, vol. 34, no. 5, 2018.

[9] Philipp Hukal, Nicholas Berente, Matt Germonprez, and Aaron Schecter, "Bots

Coordinating Work in Open Source Software Projects," Computer, vol. 52, no.

9, pp. 52-60, 2019, doi: 10.1109/mc.2018.2885970.

[10] Markus Juopperi, "Deployment automation with ChatOps and Ansible,"

2017.

[11] Junji Kinoshita, Yoji Ozawa, Ken Akune, and Nazim Sebih, "Cloud Service

Based on OSS," Technology Innovation for Accelerating Digital

Transformation, pp. p78-82, 2017.

[12] Kavyashree S, "Nia–Semi-Automated Intent Based Enterprise Chatbot,"

International Journal of Innovative Science and Research Technology, vol. 3,

no. 3, 2018.

[13] Amir Shevat, Designing Bots: Creating Conversational Experiences. 2017.

"O'Reilly Media, Inc.", 2017.

[14] Shang-Pin Ma, I-Hsiu Liu, Chun-Yu Chen, Jiun-Ting Lin, and Nien-Lin Hsueh,

"Version-Based Microservice Analysis, Monitoring, and Visualization," in

2019 26th Asia-Pacific Software Engineering Conference (APSEC), 2019:

IEEE, pp. 165-172.

[15] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, Wen-Tin Lee, Shin-Jie Lee, and

Nien-Lin Hsueh, "Using service dependency graph to analyze and test

microservices," in 2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC), 2018, vol. 2: IEEE, pp. 81-86.

https://doi.org/10.1016/j.future.2019.05.048

